
MARCH 1, 1930 PHYSICAL REVIEW VOLUME 35

NOTE ON THE THEORY OF THE INTERACTION
OF FIELD AND MATTER

BY J. R. OerENHEIMER
BERKELEY& CALIFORNIA

(Received November 12, 1929)

ABSTRACT

The paper develops a method for the systematic integration of the relativistic
wave equations for the coupling of electrons and protons with each other and with
the electromagnetic field. It is shown that, when the velocity of light is made infinite,
these equations reduce to the Schroedinger equation in configuration space for the
many body problem. It is further shown that it is impossible on the present theory
to eliminate the interaction of a charge with its own field, and that the theory leads
to false predictions when it is applied to compute the energy levels and the fre-
quency of the absorption and emission lines of an atom.

HE relativistic theory of the interaction of electrons and protons with
"~ each other and with the electromagnetic held has been developed in two

papers. ' The theory is developed in close analogy to the corresponding class-
ical theory: the field is on the one hand determined by the configuration of
the charges; and the motion of the charges is affected by the field. The in-
teraction between two charges is not then, on this theory, expressed directly
as a function of the configuration of the charges, but as the eAect on each of
the charges of the field induced by the other. On the classical theory this pro-
cedure involves grave difficulties, because each charge reacts also with its
own field. The proper energy of this interaction is, for point charges infinite;
and it depends upon the motion of the charge. On the classical theory one
tried to avoid this difficulty by ascribing to the elementary charges a finite
size; but it was not possible to carry through the theory in a way that was not
completely arbitrary; nor was it possible to make the work relativistically
invariant. One of the purposes of the present paper is to see in how far these
difficulties persist in the quantum theory, and in what measure they render
impossible the application of the theory.

Ke may recapitulate brieAy the main points of divergence between the
present quantum theoretic treatment and the classical theory. In the fIrst
place the state of the matter is here represented, not by a trajectory, but by a
wave function. Further, the Hamiltonian for the matter is that derived from
Dirac's linear wave equation, and not from the quadratic wave equation
which would follow from the classical relativistic Hamiltonian. Finally, both
the material waves and the electromagnetic waves are quantized, the matter

9l'. Heisenberg and %. Pauli, Zeits. f. Physik 56, 1 (1929); ibid. in press. The second
of these two papers is referred to in this work as LC. I am greatly indebted to Professor
Heisenberg and Professor Pauli, not only for the opportunity of seeing their work before its
publication, but also for their very valuable criticism and advice.



to make the particles satisfy the exclusion principle, the field to make the
quanta satisfy the Einstein-Bose statistics. This precedure leads to a formal

difficulty; for the fourth Maxwell equation

div E—4+p=0

is inconsistent with the quantum conditions, according to which there are
functions of the electromagnetic potentials which do not commute with div
F but which must commute with the charge density. The two papers of
Heisenberg and Pauli are distinguished chieHy by diferent methods of re-

solving this di%culty. In the former paper new terms were added to the
fourth Maxwell equation to make the new equation consistent with the quan-
tum conditions; in obtaining physical results these terms were to be made to
vanish. In the second paper a much more satisfactory method has been used,
which takes advantage of the fact. that the left hand side of (1) is a constant
of the motion for all systems involving matter and radiation; and it is shown
that this constancy follows from the gauge invariance of the Hamiltonian
for all such systems. The solution of the dynamical problem thus reduces to
finding a wave function for the coupled system of field and matter, which
makes the Hamiltonian for the coupled system a diagonal matrix, and which
in addition makes the left hand side of (1) vanish. The wave function has
thus to satisfy not only the Hamiltonian wave equation, but also a series of
wave equations which express the fact that (1) is satisfied at all points in

space. It is from this set of wave equations that we shall start in this paper;
we shall write them first in the form given in LC Eq. (68), in which the wave
function is taken as a function of the Cartesian coordinates

and spin variables

a~, I'=1. , 2, S
of the E particles in the system, the number of quanta

of frequency

vector of propagation K, = (IC„', X„', X„');X,=v„/c and polarization X, and
finally a third set of variables I'„3, which are essentially the constant com-
ponents of the electric field parallel to the vectors of propagation K„. We
shall first show that it is possible to eliminate the P,3's f'rom the wave equa-
tions in such a way that (1) is automatically satisfied. The reason why this is
possible is that the condition (1) determines div 8 precisely —instead of deter-
mining only the relative probabilities of different values of div E,—when the
configuration of the charges is known, so that the values of the P's so deter-
mined can be put at once into the Hamiltonian. When this is done the
variables Q„3 canonically conjugate to the P's must disappear from the Hamil-
tonian, since otherwise the Hamiltonian would not be consistent with (1);
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we shall show that this is in fact the case, and then proceed to an investiga-
tion of the resulting Hamiltonian.

It should be observed that the wave functions must satisfy, in addition to
the wave equations in configuration space, the condition that they be anti-
symmetric in all the electrons of the system, and antisymmetric in all the
protons of the system. Only wave functions satisfying these conditions are to
be considered in this paper; and it will therefore be unnecessary to indicate
the antisymmetry of the wave functions explicitly. The fact that electrons
and protons satisfy the exclusion principle is largely irrelevant to the difficul-
ties discussed in this work; for these difficulties persist even in the one-electron
problem. On the other hand it is to be hoped that the resolution of the errors
in the present theory will make the heuristic postulate of the exclusion prin-
ciple unnecessary.

Ke shall look for a solution of the wave equation in which both wave
function and characteristic values are expanded in powers of o/c. It has al-
ready been shown by Breit' that, when the interaction of the particles may be
treated as small, and radiation processes may be neglected, that these inter-
action terms give a contribution to the energy of the system, which, in second
order in s/c, agrees with that computed from Breit's equation. ' KVe shall not
retain the assumption that the interaction terms are small, and shall show,
somewhat more generally, that when the proper energy terms are systemat-
ically neglected, the characteristic energy levels and the wave function are
determined by Breit's equation. This equation is, of course, not relativisti-
cally invariant; and it takes no account of radiation processes. In order to
remedy these defects one must retaiTi the proper energy terms; and we shall
show that it is then possible to make a formally satisfactory theory to give the
shape and position of all spectral lines, and the energy of the normal state.
The theory, is, however, wrong, since it gives a displacement of the spectral
lines from the frequency predicted on the basis of the nonrelativistic theory
w»c»s in general infinite. This displacement arises from the inFinite inter-
action of the electron with itself; this interaction depends upon the state of
the material system; and the difference in the energy for two diferent states
is not in general finite. Thus the present theory gives no more than the non-
relativisitic theory of Jordan, Klein and Wigner. ' It seems improbable that
~«it's equation gives the energy levels of an atom correct to second order
terms in s/c; but we shall see that there is ground for supposing that it does
give the separation of the fine structure levels correctly in this order. On the
other hand the displacement in the frequency of the spectral lines which arises
from the proper energy should be of the second order in s/c, and is thus larger
than the natural line breadth, which is of the third order; and on the present
theory it is not possible to compute this displacement. We shall return later
to a consideration of these difficulties.

' G. Breit, Phys. Rev. 34, 553 (1929).
' Breit, ibid. , Eq. (6).' P. Jordan and O. Klein, Zeits. f. Physik 45, 751 (1927). P. Jordan and E. signer, ibid.

47', 63& (1928).
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1. The condition that the left hand side of (1), regarded as an operator on
the wave function &f( of the variables

QP) &P) ~rX ) Irs

shall make the wave function vanish at every point in space, gives a series
of wave equations

C,%'= P,()+ kepi)"'(qp) )k(qp &rp M„), P 3) 0

which must hold for all values of the E, consistent with the boundary
conditions. Here the i)"' are functions defined in LC (54):

2
s'(qp) = (&k„'I.') '—"sin 7&k, &"qp&" sin mk„&"qp") sin irk„"'qp")

Here L is the length of the fundamental cube, or Hohlraum, and is taken finite
in LC toavoid the introduction of a continuous manifold of normal coordi-
nates; in all our results we shall make L, become infinite. Furthermore the
Hamiltonian for the coupled system, regarded as an operator on the same
wave function, gives the wave equation

hc—P-+ P QM„).kv„+ harv„P„S' + g (aP gradp)+mpaoP&, "
r &=1,2 J 1 2' Z

+ Z&~ " '(v )+'( ' &'(v ))]IN
P-1

+ & WP"" M.),+ & '"~.) ' —~.) '"~.),
r X=1,2 P~l

+ pp"', 3 it = +8—E /=0.
P=l

Here A 0' is the external scalar potent al, and A' the external vector potential;
and A„~ is an operator which transform ms M„), into M„),—1, and leaves all other
variables unchanged; the o;&'s are operators which operate only on r„,and are
derived from the Dirac matrices n,. by the definition

a&pF((rp) = ga, ' +(pp); ao F(op) = ga p v/'(pp)
Pp pp

Further the Q„& are canonically conjugate to the P„& so that

Finally the functions )&iv"", pv"' are defined in LC (59):
1)2 3

&'p4 pa& &)(" (qp)
2 l 1
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1/2 3

pp" = 8pc gt2t vt" (qp); X= 1,2
2' Vq

1/2

v "t"(q p)
= — Ft2 cos trktqp&'/ sin trkt qp'" sin trkt"qp""',

J3

/=1, 2, 3.
) = 1,2, 3.

The square matrix F~ is given by the scheme

22 /(2 2+ 222)1/2 2122/(2 2+222)1/2

21 /(2 2+ 222)1/2 2222/(2 2+222)1/2

(2 2+ 2 2) 1/2

where the e~"s are the direction cosines of the vector K„. It should be ob-
served that.

hc h
(a gradp) epv"'(qp) = /tp"'.

2Ãj 2' i (6)

This equation, together with (3), shows that

[ec„]=o

for all r, so that all the C„'s are constants of the motion. The equations I and
II are those given' in LC (68).

From I we see that the wave function must be singular in the I"s. Ke may
avoid the use of singular functions by making a contact transformation from
the variables P to Q, and writing the wave function as:

tk(qp, op, M,2, Q,2) .

For we may then solve (3) by taking

h 8I'.3=
22ri BQ„2

If now we set

lk(qp, o'p, M 2, Q2) = e ' ""*2' ""'«2''s
tlat (qp, lrp, M&, Q,2)

the equations I give us

for all r so that
2/ =y(qp, op, M„2).

' In LC (68) the A's are dropped.



J. R. OPPESHEIMER

Further the Hamiltonian II becomes

iV

e ' ""P gepv"o(qp)Q, o E+ P— QM„),hv, +vv„gepep vo"'(qp)v"'(qp )
r P r )=1,2 P,P'

h2 82 hC
+ih g g v,epv""(qp) ——Pv,—+ g (a gPr da)p+ mcp'n oP

BQ,o 4v, BQ,o p 2ori

—c p pep(n gradp)v"'(qp)Q„o+ gep[Ao'(qp)+(cs A (qp)) j (10)
P P

+ Q Q(((p"'Q, o+ i Q Q Qpp"" [(M,„+I))"6,„—'
r )=12 P

—M„'"6, )}4(q M, )=0.

The terms in Q drop out because of (6); the terms in 8/ciQ give nothing be-
cause of (9). The equations I and II thus reduce to the single system

—8+ +opMk+' , g,y" (()c + )'("6, ' —M, '"6, ]}4=00
r~

r r
~

~~~
r r

~
r l

hc
EEo= g (np gradp)+mIc'aop+pp[Ao'(qp)+(o!p A'(qp))

P 2~1

+ Z Z ""'"'(v )"(v )}P' r

It is this system which we must now investigate.
The terms

G(qp qp) = Qwv„v"o(qp)v"o(qp )

may readily be evaluated, " and give for I.~~

G(q&' ql"') ' «)" =
l

qp qp
~

. —
27PP

(12)

The terms for P and P' different give the electrostatic interaction of the two
particles; the terms for P =p' give the infinite electrostatic proper energy of
the particles; on the present theory it is not possible, as it was on the non-
relativistic theory, ' to eliminate these terms; the physical ground for this
impossibility has already been indicated, and lies in the fact that the field

acting on any particle is the sum of the fields induced by all particles; it is a
consequence of the principle of superposition for the field. These electro-
static proper energy terms do not, however, interfere with the application of
the theory, since they are constants, and may be dropped from (11)without
altering the form of the wave function. We shall find other infinite proper

l~ 9f. Heisenberg and O'. Pauli, Zeits. f. Physik 56, 1 (1929). Eq. (115);G. Breit, reference
2 Eq. {57). Breit has independently evaluated the P„3 terms in the Hamiltonian; and I am
much intebted to him for informinz me of his result
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energy terms in the course of the work. ; but these will turn out not to be con-
stants, but to depend upon the configuration of the system; dropping them
does alter the form of the wave function.

If we now neglect the coupling between matter and the light quantum
field the wave equation reduces to

E+H—p+ Q M,ghv„ot =0
rX

and for the case that no quanta are present we have

hc—E+ Q (ap gradp)+nppc'ap +ep[A p'(q p) +(n A(qp)]
O'F l

epep
I

4(op, qp) =0.
PP' OfPP'

(13)

(14)

We shall show that the terms which we have neglected in (12) are small of the
order (v/c)'; and by neglecting other terms of the same order, (13) can be
considerably simplified. For consider first the equation

kc—E+ Q (aP grsdp)+nppc'apP 4 =0.
p Oxl

For N-free uncoupled particles. If we choose all matrices)~ a,,'... ~~
of the form

0 0 b a

0 0 c d
(16)

b c 0 0

o oJ
and all the )~a,„'., (( of the form:

+1 0

0 +1
0 —1 0

0 0 —1 )
and satisfying of course

[ap pa' '] =0 for I AI" [a" a" ]+=2bpv

(16)

then any p(&rv) in which n of the op's have either of the values 3 or 4 will be
small compared with any of the P's for which all of the 0„'s have the values
1 or 2 of the order (v/c)". Now the terms

epep
epA p'(qp)

PP O~PF'

in (14) do not involve the av's, while the terms

ep(aP A(qp))
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are small of the order v/c; thus as s/c is made to vanish, all the solutions of(14)
vanish except those for which all the ~v's have the values 1 or 2; and (14)
reduces to

h' e pep ~—E+ g mpc'+ epAo'(qp) —,hp g' — Q(opqp) =0 (18)
P 8m'ySP p 2r p p

for all o.„'s=i or 2 and

p(cpqp) =0 for any ep ——3 or 4

which is the Schroedinger equation for the X-body problem. v It would thus be
possible to take (18) as the starting point for our systematic solution of (11)
in powers of c/c. We shall not do this, however, as it would complicate the
analysis, and lead to no new results. We shall thus give up the assumption
that the cr's are written in the form (16), and take for our zero'th approxima-
tion to (11),the solutions of (14).*
2. We may write the equations (11) seriatim:

PM& M=O;( —E+Ho)4= —i gyp P(1„); P=g(0,„) (11.1)

( —E+ hv, +Ho)y(1„~) =+i Qpp""y — iQ Q pp""'y(1„)„1„),)M=1 P —r'X' P

—2'"i Qt '"4(2.~)
P

'
( E+h(v„+v—„)+Ho)4(1.~, 1, ) ) =+i Q[vp""4(1") )

P

+t p"" 4(4)]—o Q Qt p"'""y(1,~, 1, &, , 1, ),-)
r"X" P

—2'"i g [t p'"4 (2.~, 1"&, )+t p""'4 (1.~, 2.,~ ) l
P

[ (—E+2hv, +Ho)g(2, q) = +2"'i gyp'"Q(1, z)
P

(11.2)

(11.3)

—i Q' Qt p""'4(2,)„1,~ )—3'"i Qpp'"4(3, ~)
r'X' P P

etc.

(11.4)

Now for fixed r, and fixed K„,

whereas

rx —0(c—1/2)

v, =0(c).

' It is possible to write the two component wave equation when the magnetic interactions
are retained up to the order (v/c}', as has been shown by Breit, reference 2.

~ We shall not make explicit use of the fact that the a's are in the form (16); we shall, how-
ever, retain the assumption that the a's are small of the order v/c, to obtain p,„'"= 0(c ~I~).
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Thus we should expect p(l, q) to be small of the order c '", p(1,&„1,'i, ') to be
of the order c ', and so on, and we should try to find a solution of (11) of the
form

with

g —g(o)+g(&)+g(2). . .

y(M, i) =. P&"(M„i)+&&&i(M,i)

E&"'=0(c ")
y&n)(M &) 0(&

—a—3/2M)

(19)

It should be observed that in general there will be certain frequencies for
which p(l, i,), p(1„i„1„'i,') etc. will not converge uniformly for &:—&~; and that
for these frequencies the expansions (19) will be illegitimate. The frequencies
for which this convergence is non-uniform are those for which

+8 QM—„ghv„

is a characteristic value of the homogeneous equations

(20)

Such frequencies will not occur if (20) has no solutions for X (B, i.e. if the
material system is in a normal state; but in general the expansions (19) must
be modified; we shall return to this modification later, and shall see that it
gives a satisfactory theory of the absorption and emission of radiation; but for
the present we shall assume that the atom is in a normal state, so that (19)
is justified.

On the present theory there is no normal state for the matter, because
states of infinite negative energy are possible; one may in fact show that, on
the present theory, Dirac jumps to such states from states of positive energy,
jumps in which the energy and momentum lost by the matter are taken up by
the field, are not only possible, but infinitely probable. But that the theory
should predict this is a token of an error in the theory; and since the Dirac
jumps do not seem to be directly responsible for the difhculties with which
we are, in this work, most concerned, we shall for the present neglect them.

Ke shall first give a complete solution for the case that we drop all proper
energy terms, for the case, that is, that in all double sums of the form

~(gp, 0'p
& imp, Pp )

PP'

we may set the terms with p equal to p' equal to zero. This solution is not
unique beyond terms of the second order in vjc; for in the higher orders it is
no longer possible uniquely to separate proper energy and interaction energy.
But we may readily obtain a possible solution:

P

hVr
(21)
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where
, PP PP—@+II,—g g'

rX.

(22)

For if we put these values, for example, in (11.2) we get

P

hv„

—1' +XI-o

tgt PP I

PP kVr'h'
(23)

Now in

+ EXo, Qpp"" (I =o Qpp'"(t .hv„p
hc

Z[o,»'")= E .(»" o o)+ ' '+"(»'&(o)),»'"
p ppi 2&4

and in
t)) / ))) I

PP IILP

PP'
we may put

(24)

so that
PP' PP'

(qp) i)i' (qp"')= ePep — A~ CX~

2' l l' rX Vr"

+[II & ']=o (25)
P

and (11.2) is satisfied. In a similar way it may be shown that all the equations
(11)are satisfied.

Ke may evalute the terms

pp pp

kV„

in (22) by observing that for l/I'

i))'"(qp)i)) '~(qp ) 8 8Z, -=—.. ., F(qpqp )
rX Bq Bq

so that

t (""(qp)i (""(qp )

Vr
2 , P'(qp, qr )

2c~fpps Bq p

» '» ' —~ '(»' »') (»' )(»' )
)hVr 4 ~PP' ~ PP'

This gives for &0

(27)

, 8P8P~—z+o,+—Z' )(»» ')" +(» )(»', ))I»=o ()o)
pp ~'pp

This is the equation used by Breit. It is patently not relativistica11yinvariant;
this means that the proper energy terms are not invariant, and forces us to
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retain these terms, at least in part. Furthermore, we have not, in the deduc-
tion of (28), used the fact that the atom is in its normal state; in spite of this
there is no sign, in the solution, of processes involving the emission or ab-
sorption of radiation; for these processes arise from the interaction of the
particles with their own field. We have, therefore, to consider the solution of
(11) when the proper energy is not neglected; the retention of these terms will

preserve the invariance of the theory, and give usan account of radiation proc-
esses, but it leads to results in contradiction with experiment; it makes the
validity of (28), even to the second order in 2)/c, doubtful.

3. We can readily find a solution of the form (19)when

E'and&�'correspond

to a normal state for the matter; but we cannot find this solution in closed
form; nor is there an equation in configuration space, corresponding to (28),
for p. If we put (19) in (11.2) etc. we get

y(0) 1„), =2
hP +g ( ) F0(o)

and further

f&on= Q Jt' ' 'Jt d(I(

(0) rky (0)

a' ~ ~ - rrN

(Q E (0))y (0) —
O

(29)

r)k «')k' (O)
bo~ bm~ 4~

y&"&(4„1,k) = —Q
[hv„+E '"—Eo"'] [h(v„+v, )+E„"'—Eo"']

r'X' r) (0)
bp b „@„

(30)
[hv;+E & & —Eo ] [h(v, +v;)+E —Eo ]

r'A rX

bp b„
P "&(2rk) = —2'(2+ — . etC

[hv +E & & —Eo( &] [2hv +E, ' —Eo ]

Further E(0') and )t)(0') vanish, and

(2)—
hv +E (0) E (0)

rX -rX (0)

y (2)— born bmn yn

[h.„+E o —E, o ] [E„o&—E.&o ]

Moreover p"(„Ik), &t)(02) and E(0') vanish, and

r9..'-«9,.' rX (0)
horn f)ma f)rrk Ak

[h„ , +.E &o) E &o& ] [h„ +E (o) E (o) ] [E &o) E &o) ]

(32)
r'X' -r'X' «X -«X

f&0 l& .h. k hko

0 [h„,+E &o& E (o) ] [h„ +E„&o& E &o& ] [E &0) Eo&o& ]
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The terms

and
i—p

g (0)@(0)(1z)

)((p '1'1&&(0)(1 11,&,
,) —2((oi g&1pr"$(0) (2,&,)

in the equation for 0&(0) (1,&, ) cancel, so that
y(0& (1 ) —0

and
(5) —0 +0(5) —0

The expansion for E(" and p(" can be continued, and only terms of even
order in ()/c appear.

It will be observed that the interaction terms in (31)

Q [/&V +g (0) g (0) ]
—1

Jf q (0) rip (0)d+
J y (0)+,rXy (0)d+ (33)

we write dq for J
I 0)q (1). . . d(IN(0) Q

(r' ~ .aX

differ from those computed for the second order from (28):

Q(Qv ) 1 J[ y ((&&( r1~ (0)d(2 J[ 11& (0&&(,rz1l1 (0&d&

It is possible to express

PP PP

hp +g (0) g (0)

in terms of the conHuent hypergeometric functions, but the expressions are
too complicated to be suitable for calculation.

The proper energy terms

J
(0)& rid (o)d+

Z—
h„+g (0) g, (0)

do not exist, although both

rXP no

rX

TOm, P

converge; for large v„,

Q2'o„,p=p(1)
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and for large 8
+To,p ——0(1) .

The energy level of the normal state is thus infinitely displaced by the
interaction of the particles with the field; the question which we have now to
consider is whether or not the energy differences between two states are dis-
placed by a finite or an infinite amount.

In order to answer this question we must treat the case of energies which
do not correspond to a normal state for the matter; and we have to modify
(19), and take account of the emission of radiation by the system. And for
this purpose it is convenient to make the dimensions I.of the Hohlraum in-

finite, because that makes the physical interpretation of the solution more
immediate. For then v, becomes continuous and we may normalize the
s~'"(g~) to the intervals AvAco, where Aa& is the element of solid angle of the
unit vector e,. Furthermore we may treat here, to simplify the writing, the
case that E corresponds to the first excited state of the atom, so that there is
only one energy Eo lower than 8 for which (20) is soluble.

We define the energy of the normal state by

EQ EQ(o) +EQ (2) +EQ (4) (35)

where Zo"' and Eo'+ are given by (31) and (32), and we define the corres-
ponding wave function

@ —y (o)+y (2)+y (4) (36)

where Po~" is given by (31). We can then extend this definition formally to
obtain the energy and wave function of excited states:

(o)+E (2)+E (4)

(37)

(o)+p (')+@ ( ' . etc.

But in the expressions for E„("etc, and p.,(2) etc, the integrals over v are now
improper, and we have to displace the path of integration around the singu-
larities. This is equivalent to replacing

1
for E„'"(E "'

hv+E„(o) —E (o)

1
+is'5(hvar g (o) g (0&)

hv+ E (o) E (o)
(38)

and then taking the principal value of the integrals over v. Then in general all
the 8 's except Eo are complex. We now transform the p(M, &„g„o~) by the
formulae
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4 (M„)„,m) = Q J~ JT
dq&&" dq&"'u„, (qp, np)

4 (~.)„,qp, ~p)

and introduce

y,„„„p=Q Jj .
Jl dqg"' . . de"'8 pp"~N.„.

oP

Then if the p(,'lf, m) satisfy the equations, which follow from (11):

r) Eo —E
( —E+F- )p(0, m) = —i JIdv„J~d(v, Q Qpo~ pFg(co, X)6 v„+——

(39)

(40)

r'X'—J/dv„JId(a„g Q p„,p ) dv„' Id&a„' Q Qyo„p. F2((a„,(v„', v, ', X, X') (4l)
P X' P'

v„+v„'+ —+ .

1 i+6 0 F.„ F. —
p(l, y, 1m) = i Qy„,~(0,n), +— -6 v„+

p ( —E+hv +E h h

+»( ~ )5(" + ——'E ' d .' ' d .' Qg

»(,', „., ', ~, x')r(. ,y.,'+
h

(42)

r'X' rX

4 (1„)„,1„~,m) =i+ I p„, 4(1p„)„n)+p. 4(1p, g, , I) I

Eo —E+~(; ,~ ~ v(;+.,'+'—
h

where now the functions F are completely arbitrary, then the 4 (M„&„qv, 0 v)

satisfy (11);for each choice of these F's we can obtain a solution of (11). Now

the terms
rX~-,p4(0, ~)

etc.—E+hvr+ E

give a radiation field which does not extend to infinity; and the terms
rX

+ Z1I Pnm, ,P Eo —E—p(0, n)8 o5 v, +——etc.
h h

represent outgoing' electromagnetic waves, so that by the choice of the I"s

P. A. M. Dirac, Zeits. f. Physik 44, 585 (1927).
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we may determine the radiation incident upon the system. The simplest case
is tha. t in which only quanta of the single frequency

1
v= (Z —Eo)—=v,

h
(43)

are incident upon the system, so that all the F's vanish except

F,(o,X).
For this case

i Q Q gt doorpom, p~&(&, 7t)
X P

y(o, so) =+
E—E

iG„"

E—E
(44)

Now by hypothesis E is to be chosen that only one E —E,that for m = 1, say,
is to be small, so that only

iGg"
4(0, 1)=

1

is large. The probability of absorption to this state is thus proportional to

(45)

so that the shape of the absorption line is given by

const.

1 2

v+—(Zo —Eg)
h

(47)

since 6'„, varies slowly with v.

If we evaluate Eo,E~ to the second order in s/c, and drop the higher terms-
and this is equivalent to neglecting transitions in which more than one quan-
tum plays a part —(47) reduces to

const.
(48)

1 1 1 1 1
&+ (go(o) g&o) + (go(2) g&(2) g&(2)) + I

g&(2) g&(2)
I

2

h h 2 2 4h'

The absorption line is thus of the same shape as that predicted on the basis
of the correspondence principle, and that found, for this case, by Dirac, and
the half-breadth of the line is

' E (2) E~(2) ~X=—
I d~ Q I

&oi I
'=

2h I h ), 4~7'

where 7.
~ is the natural life time of the state 1.
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The center of the absorption line is displaced to the red from (1/h) (E,&"—
Eo&") by an amount

dv d(d

1
dv dM

h

IJ ln, P * Pnl, P' /On, ,P ' PnO, P'
50

hv+8 "'—El"' hv+E„(o)—Eo (o)

Here the principle values are to be taken for all improper integrals over v.
The terms for p W p' are just those to be expected from (33) for the displace-
ment of the energy levels by the magnetic interaction of the particles. The
terms

A rX

(51)

must be ascribed to the eHect of the interaction of the particle with its own
field. They may be compared with the formula obtained' for the same effect
by Dirac, who finds a displacement

d& i d(v 52
h J J &, hv+Eo&" —E&&"

There does not appear to be any justification for this result, because in its
derivation terms were neglected that are of the same order as those retained.
But it is of interest to observe that the integral in (52) exists, and gives a
finite displacement of the line of the second order in v/c. This displacement
is thus larger than the natural line breadth, which is of the third order. It can
be computed' when the u's are known. Thus for the first Lyman doublet of
hydrogen we find the same displacement, in this order, for both components;
it turns out to be

ch 1 ch
+ ~IO

327r 8 7 l 3271 8

which is about forty times the line breadth. The fact that this term, and the
similar terms in (51), are the same, in second order, for the two components
of the doublet, suggests that the formulae (33) in which the proper energy is
neglected, will give the atomic fine structure splitting correct to the second
order.

If we try to compute the displacement from (51), we find that the in-
tegrals over v diverge logarithmically for high frequencies. One can readily

' The calculations of the displacements predicted by the results of Dirac were carried
through in collaboration with Harvey Hall; and I am indebted to him for permission to quote
them here. One must use the retarded potentials to obtain a convergent integral.
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see that this is not the result of the neglect of higher order terms, nor of any
of the approximations made in the work. The theory thus leads to the false
prediction that spectral lines will be infinitely displaced from the values com-
puted by the Bohr frequency condition. The behavior of the expression (51)
calls for some comment. As the formula stands, the integral over v diverges
absolutely; this may be verified by evaluating the terms for a free particle.
But the question arises whether it is possible so to rearrange the order of
the integration over v the summation over n, and the two integrations involved
in the evaluation of the li „'s by (40), that the limit n —~ix, v—+~ exists.
This cannot be eGected by an interchange of the sum over n and the integral
over v; but there is a procedure which, when the 8's in the resonance de-
nominators of (51) are dropped, does give an absolutely convergent result.
This procedure was suggested by Heisenberg, who showed that, if we first
perform the integration over v and co and the summation over ), then sum
over all the states n of the same energy, then sum these up to some large but
Finite energy E, take the difference of the two terms for the state (0) and the
state (1), then perform the two integrations over the configuration space,
and Finally allow E to become infinite, the limit E i~ exists, and (51) tends
to zero. But if we try to apply this procedure to (51) when the E terms are
not dropped, we get for the leading term the divergent result

4e '/hc (Ei'" —Eoi"&)/Ii f"dx/x (53)

Nor is there any method for obtaining an absolutely convergent expression
for (51). It should be observed that (53) gives us another justification for
using (33) to get the Fine structure separations correct to the second order.

One can see quite simply that (47) ought not to give a finite line dis-
placement. For consider two states of a free particle; in one let the particle
be at rest; in the other let it have the velocity v. Then if the energy of the
particle at rest be 8, the energy of the moving particle in proper coordinates
moving with the particle will also be Z. But we know how this energy
transforms under a Lorentz transformation; in the original coordinates it
will be

~= II-(/) 1-"
and in the same coordinates the difference in energy of the two states, which
gives the line displacement, will be

E(0 1)—
But this can only be Finite if E is finite which, by (31), it is not.

Ke have treated these difficulties in some detail, because they show that
the present theory will not be applicable to any problem where relativistic
effects are important, where, that is, we cannot be guided throughout by the
limiting case c—& ~. The theory can thus not be applied to a discussion of the
structure of the nuclei. It appears improbable that the difhculties discussed in
this work will be soluble without an adequate theory of the masses of electron
and proton; nor is it certain that such a theory will be possible on the basis of
the special theory of relativity.


